Molecular and genetic mechanisms of egg shell formation
https://doi.org/10.25687/3034-493X.2025.2.1.001
Abstract
Eggs are one of the most sought-after sources of available animal protein. Eggshell quality is of particular biological interest and economic importance to the poultry industry. Huge losses caused by eggshell quality deterioration have become an urgent problem in the production of breeding and food eggs. Deterioration of eggshell quality causes the risk of foodborne diseases in consumers. This review analyzes the literature data on molecular and genetic mechanisms of eggshell formation. Transcriptome analysis of the eggshell gland in laying hens differing in age showed differential expression of FGF14, COL25A1, GPX8 and GRXCR1 genes. Functional annotation analysis showed their involvement in processes related to eggshell calcification and cuticularization. Examination of the transcriptome of 49-week-old hens divided into groups according to eggshell quality showed that the KRT14 gene was one of the genes with the largest difference between groups with strong and fragile eggshells. Following KRT14 overexpression in uterine epithelial cells, the expression of OC-116, CALB1 and BST1 increases significantly, while OC-17 expression decreases significantly. Comparison of differentially expressed genes in two independent studies performed on chickens with different shell quality traits revealed 16 genes whose expression patterns were similar. The identified genes are involved in various biological processes and perform a variety of functions. Thus, the protein encoded by the TTYH3 gene functions as a calcium(2+)-activated chloride(-) channel of large conductance. The ITPKA gene regulates the metabolism of inositol phosphate, which is a substrate for cyclic AMP-dependent protein kinase, calcium/ calmodulin-dependent protein kinase II, and protein kinase C in vitro. ITPKA is one of the genes that bind to eggshell speckles. Thus, the performed analysis of literature data showed that molecular genetic mechanisms of eggshell formation are complex and not fully understood. The studies demonstrate the role of differentially expressed genes in various processes, including their potential participation in the calcification process.
About the Authors
O. V. KostyuninaRussian Federation
Moscow Region
O. S. Romanenkova
Russian Federation
Moscow Region
O. V. Aleynikova
Russian Federation
Moscow Region
References
1. Seuss-Baum, I. Nutritional evaluation of egg compounds / I. Seuss-Baum // Bioactive egg compounds / Ed.: R. Huopalahti, R. López-Fandiño, M. Anton, R. Schade. – Verlag Berlin Heidelberg, Springer Publ., 2007. – P.117–144.: – ISBN: 978-3-540-37883-9. – full_text.
2. Mottet, A. Global poultry production: Current state and future outlook and challenges / A. Mottet, G. Tempio // World’s Poult. Sci. J. – 2017. – V. 73. –P. 1–12. DOI:10.1017/s0043933917000071.
3. Schmidt-Nielsen, K. Animal Physiology: adaptation and environment / K. Schmidt-Nielsen // New York: Cambridge University Press. - 1997. - 607 p.
4. Anton, M. Bioactive egg components and their potential uses / M. Anton, F. Nau, Y. Nys // Worlds Poult Sci J. – 2006. – V. 62 (03). – P. 429–438. DOI: 10.1017/S004393390600105X.
5. Rehault, S. Biological activities of the egg / S. Rehault, M. Anton, F. Nau [et al.] // INRA Prod Anim. –2007. – V. 20 (4). – P. 337–347. DOI: 10.20870/productions-animales.2007.20.4.3470
6. Moreau, T. Antimicrobial Proteins and Peptides in Avian Eggshell: Structural Diversity and Potential Roles in Biomineralization / T. Moreau, J. Gautron, M. [et al.] // Front Immunol. 2022. –V. 13. - P.946428. DOI: 10.3389/fimmu.2022.946428.
7. Mine, Y. Egg bioscience and biotechnology / Y. Mine // Hoboken, New Jersey: John Willeys & Sons, Inc. –2008. – 376p.
8. Gautron J. Function of eggshell matrix proteins / J. Gautron, Y. Nys // Bioactive egg compounds / Ed.: R. Huopalahti, R. López-Fandiño, M. Anton, R. Schade. – Germany, Springer-Verlag Publ., 2007. – P. 109–115. – ISBN: 978-3-540-37883-9. – full_text.
9. Gautron, J. Avian eggshell biomineralization: an update on its structure, mineralogy and protein tool kit / J. Gautron, L. Stapane, N. Le Roy [et al.] // BMC Mol Cell Biol. – 2021. – V. 22 (1). – P. 11. DOI: 10.1186/s12860-021-00350-0.
10. Hincke, M.T. The eggshell: structure, composition and mineralization / M.T. Hincke, Y. Nys, J. Gautron [et al.] // Front Biosci. – 2012. – V. 17. – P. 1266–1280. DOI: 10.2741/3985.
11. Nys, Y. Avian eggshell mineralization / Y. Nys, M.T. Hincke, J.L. Arias [et al.] // Poult Avian Biol Rev. – 1999. – V. 10 (3). – P. 143–166.
12. Sauveur, B. Reproduction des volailles et production d'oeufs / B. Sauveur, M. Derevier // Quae edn. Paris: INRA –1988.
13. Solomon, S.E. Egg and egg quality / S.E.Solomon // London, England: Wolfe publishing. – 1991. – 149 p.
14. Ar, A. The avian egg: mass and strength / A. Ar, H. Rahn, V.C. Paganelli // Condor. – 1979. – V.81 (4). – P. 331–337. DOI: 10.2307/1366955.
15. Dennis, J.E. Microstructure of matrix and mineral components of eggshells from white leghorn chickens (Gallus gallus) / J.E. Dennis, S.Q. Xiao, M. Agarwal [et al.] // J Morphol.– 1996. – V.228 (3). – P. 287–306. DOI: 10.1002/(SICI)1097-4687(199606)228:3<287::AID-JMOR2>3.0.CO;2-#.
16. Chen, X. Impact of cuticle quality and eggshell thickness on egg antibacterial efficiency / X. Chen, X. Li,; Y. Guo [et al.] // Poult. Sci. – 2019. – V. 98. – P. 940–948.
17. Li, G. Genome-Wide Analysis of lncRNA and mRNA Expression in the Uterus of Laying Hens during Aging / G. Li, X. Yang, J. Li, B. Zhang // Genes– 2023. – V. 14. – P. 639. DOI.org/10.3390/genes14030639.
18. Travel, A. Effect of hen age, moult, laying environment and egg storage on egg quality / A. Travel, , Y. Nys, M. Bain // Improving the Safety and Quality of Eggs and Egg Products. – 2011. – P. 300–329. DOI:10.1533/9780857093912.3.300
19. Nys, Y. Improving the Safety and Quality of Eggs and Egg Products / Y. Nys, M. Bain, F. van Immerseel // Woodhead Publishing Limited: Cambridge. UK. –2011. –P.300–329.
20. Marie, P. Quantitative proteomics and bioinformatic analysis provide new insight into protein function during avian eggshell biomineralization / P Marie, V. Labas, A. Brionne [et al.] // J. Proteom. –2015. – V. 126. – P. 140–154.
21. Nys, Y. Avian eggshell mineralization: biochemical and functional characterization of matrix proteins / Y. Nys, J. Gautron, J.M. Garcia-Ruiz, M.T. Hincke // C R Palevol. – 2004. – V. 3. – P. 549–562. DOI: 10.1016/j.crpv.2004.08.002.
22. Brionne, A. Hen uterine gene expression profiling during eggshell formation reveals putative proteins involved in the supply of minerals or in the shell mineralization process / A. Brionne, Y. Nys, C. Hennequet-Antier, J. Gautron // BMC Genomics. – 2014. – V. 15. – P. 220. DOI: 10.1186/1471-2164-15-220.
23. Belcher, A.M. Control of crystal phase switching and orientation by soluble mollusc-shell proteins / A.M. Belcher, R.J. Christensen, P.K. Hansma // Nature. –1996. – V. 381(6577). – P. 56–58. DOI:10.1038/381056a0.
24. Dunn, I.C. Polymorphisms in eggshell organic matrix genes are associated with eggshell quality measurements in pedigree Rhode Island Red hens / I.C. Dunn, N.T. Joseph, M. Bain [et al.] // Anim Genet. – 2009. – V. 40 (1). – P. 110–114. DOI: 10.1111/j.1365-2052.2008.01794.x.
25. Dunn, I.C. Genetic variation in eggshell crystal size and orientation is large and these traits are correlated with shell thickness and are associated with eggshell matrix protein markers / I.C. Dunn, A.B. Rodríguez-Navarro, K. Mcdade [et al.] // Animal Genetics. – 2012. – V. 43 (4). – P. 410–418. DOI: 10.1111/j.1365-2052.2011.02280.x.
26. Mann, K. Phosphoproteins of the chicken eggshell calcified layer / K. Mann, J.V. Olsen, B. Macek [et al.] // Proteomics. – 2007. – V. 7 (1). – P. 106–115. DOI: 10.1002/pmic.200600635.
27. Hincke, M.T. Ovalbumin is a component of the chicken eggshell matrix / M.T. Hincke // Connect Tissue Res. – 1995. – V. 31(3). – P. 227–233. DOI: 10.3109/03008209509010814.
28. Hincke, M.T. Identification and localization of lysozyme as a component of the eggshell membranes and shell matrix / M.T. Hincke, J. Gautron, M. Panheleux [et al.] // Matrix Biol. –2000. – V. 19. –P. 443–453. DOI: 10.1016/S0945-053X(00)00095-0.
29. Gautron, J. Ovotransferrin is a matrix protein of the hen eggshell membranes and basal calcified layer / J. Gautron, M.T. Hincke, M. Panhéleux [et al.] // Connect Tissue Res. –2001. – V. 42 (4). – P.255–267. DOI: 10.3109/03008200109016840.
30. Mann, K. Disulfide-linked heterodimeric clusterin is a component of the chicken eggshell matrix and egg white / K. Mann, J. Gautron, Y, Nys [et al.] // Matrix Biol. –2003. – V. 22 (5). – P. 397– 407. DOI: 10.1016/S0945-053X(03)00072-6.
31. Mann, K. The amino acid sequence of ovocleidin 17, a major protein of the avian eggshell calcified layer / K. Mann, F. Siedler // Biochem Mol Biol Int. – 1999. – V. 47 (6) . – P. 997–1007.
32. Hincke, M.T. Molecular cloning and ultrastructural localization of the core protein of an eggshell matrix proteoglycan, ovocleidin-116 / M.T. Hincke, J. Gautron, C.P. Tsang [et al.] // J Biol Chem. – 1999. – V. 274 (46). – P. 32915–32923. DOI: 10.1074/jbc.274.46.32915.
33. Carrino, D.A. Dermatan sulfate proteoglycans from the mineralized matrix of the avian eggshell / D.A. Carrino, J.P. Rodriguez, A.I. Caplan // Connect Tissue Res. – 1997. – V. 36 (3). – P. 175–193. DOI: 10.3109/03008209709160219.
34. Fernandez, M.S. Secretion pattern, ultrastructural localization and function of extracellular matrix molecules involved in eggshell formation / M.S. Fernandez, A. Moya, L. Lopez, J.L. Arias // Matrix Biol. – 2001. – V. 19. – P. 793–803. DOI: 10.1016/S0945-053X(00)00128-1.
35. Gautron, J. Ovocalyxin-32, a novel chicken eggshell matrix protein: Isolation, amino acid sequencing, cloning and immunocytochemical localization / J. Gautron, M..T. Hincke, K. Mann [et al.] // J Biol Chem. – 2001. –V. 276 (42). – P. 39243–39252. DOI: 10.1074/jbc.M104543200.
36. Gautron, J. Cloning of ovocalyxin-36, a novel chicken eggshell protein related to lipopolysaccharide-binding proteins, bactericidal permeability-increasing proteins, and plunc family proteins / J. Gautron, E. Murayama, A.J. Vignal [et al.] // Biol Chem. – 2007. – V. 282 (8). – P. 5273–5286. DOI: 10.1074/jbc.M610294200.
37. Gautron, J. Eggshell matrix proteins / J. Gautron, Y. Nys // Bioactive egg compounds / Ed.: R. Huopalahti, R. López-Fandiño, M. Anton, R. Schade. – Verlag Berlin Heidelberg, Springer Publ., 2007. – P. 103–108. : – ISBN: 978-3-540-37883-9. – full_text.
38. Joyner, C.J. The effect of age on egg production in the domestic hen / C.J. Joyner, M.J. Peddie, T.G. Taylor // Gen. Comp. Endocrinol. – 1987. – V. 65. – P. 331–336.
39. AlBatshan, H.A. Duodenal Calcium Uptake, Femur Ash, and Eggshell Quality Decline with Age and Increase Following Molt / H.A. AlBatshan, S.E. Scheideler, B.L. Black [et al.] // Poult. Sci. – 1994. – V. 73. – P. 1590–1596.
40. Athanasiadou, D. Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell / D. Athanasiadou, W. Jiang, D. Goldbaum [et al.] // Sci. Adv. –2018. – V.4: eaar3219. DOI: 10.1126/sciadv.aar3219.
41. Roberts, J.R. Effect of production system and flock age on egg quality and total bacterial load in commercial laying hens / J.R. Roberts, K.K. Chousalkar // J. Appl. Poult. Res. – 2014. – V. 23. – P. 59–70.
42. Feng, J. Uterine transcriptome analysis reveals mRNA expression changes associated with the ultrastructure differences of eggshell in young and aged laying hens / J. Feng, H.J. Zhang, S.G. Wu [et al.] // BMC Genom. – 2020. – V. 21. – P. 770. DOI: 10.1186/s12864-020-07177-7.
43. Park, J.A. Histological change of uterus endometrium and expression of the eggshellrelated genes according to hen age / J.A. Park, E.J. Cho, J.Y. Park, S.H. Sohn // Korean J. Poult. Sci. – 2017. – V.44. – P. 19–28.
44. Wistedt, A. Age-related changes in the shell gland and duodenum in relation to shell quality and bone strength in commercial laying hen hybrids / A. Wistedt, Y. Ridderstrale, H. Wall, L. Holm // Acta. Vet. Scand. – 2019. – V. 61. –P. 14. DOI: 10.1186/s13028-019-0449-1.
45. Sun, C.J. Expression analysis for candidate genes associated with eggshell mechanical property / C.J. Sun, Z.Y. Duan, L.J. Qu [et al.] // Journal of Integrative Agriculture. – V. 15 (2) – 2016. – P. 397–402. ISSN 2095-3119. DOI: 10.1016/S2095-3119(14)60969-2.
46. Zhang, Q. Integrating transcriptome and genome re-sequencing data to identify key genes and mutations affecting chicken eggshell qualities / Q. Zhang, F. Zhu, L. Liu, [et al.] // PLoS One. – 2015. – V. 10 (5): e0125890. DOI: 10.1371/journal.pone.0125890.
47. Wu, Y. Multiomic analysis revealed the regulatory role of the KRT14 gene in eggshell quality / Y. Wu, Y. Sun, H. Zhang [et al.] // Front Genet. – 2022. – V.13. – P. 927670. DOI: 10.3389/fgene.2022.927670.
48. Hudson, N.J. Data compression can discriminate broilers by selection line, detect haplotypes, and estimate genetic potential for complex phenotypes / N.J. Hudson, R.J. Hawken, R. Okimoto [et al.] // Poult Sci. – 2017. – V. 96 (9). – P. 3031–3038. DOI: 10.3382/ps/pex151.
49. Claire D’Andre, H. Identification and characterization of genes that control fat deposition in chickens / H. Claire D’Andre, W. Paul, X. Shen [et al.] // J. Anim. Sci. Biotechnol. – 2013. – V.4. – P. 43. DOI.org/10.1186/2049-1891-4-43.
50. Sims, M.A. Cloning and characterisation of ITGAV, the genomic sequence for human cell adhesion protein (vitronectin) receptor alpha subunit, CD51 / M.A. Sims, S.D. Field, M.R. Barnes [et al.] // Cytogenet Cell Genet. – 2000. – V. 89 (3-4). – P. 268–271. DOI: 10.1159/000015631.
51. Chen, B. A Genome-Wide mRNA screen and functional analysis reveal foxo3 as a candidate gene for chicken growth / B. Chen, J. Xu, X. He [et al.] // PLoS One. –2015. – V. 10 (9). – e0137087. DOI: 10.1371/journal.pone.0137087.
52. Sinha, R. LRRTM4: A novel regulator of presynaptic inhibition and ribbon synapse arrangements of retinal bipolar cells / R. Sinha, T.J. Siddiqui, N. Padmanabhan [et al.] // Neuron. – 2020. – V. 105 (6). – P. 1007–1017.e5. DOI: 10.1016/j.neuron.2019.12.028.
53. Parveen, A. Identification and validation of quantitative trait loci for ascites syndrome in broiler chickens using whole genome resequencing / A. Parveen, C.D. Jackson, S. Dey [et al.] // BMC Genet. –2020. – V. 21 (1). – P. 54. DOI: 10.1186/s12863-020-00859-x.
54. Katano-Toki, A. THRAP3 interacts with HELZ2 and plays a novel role in adipocyte differentiation / A. Katano-Toki, T. Satoh, T. Tomaru [et al.] // Mol Endocrinol. – 2013. – V. 27 (5). – P. 769–780. DOI: 10.1210/me.2012-1332.
55. Mastrangelo, S. Genome-wide mapping of signatures of selection using a high-density array identified candidate genes for growth traits and local adaptation in chickens / S. Mastrangelo, S. Ben-Jemaa, F Perini [et al.] // Genet. Sel. Evol. – 2023. – V. 55 (1). – P. 20. DOI: 10.1186/s12711-023-00790-6.
56. Kanlisi, R.A. Genetic architecture of body weight, carcass, and internal organs traits of Ghanaian local chickens / R.A. Kanlisi, Amuzu- E.N. Aweh, A. Naazie [et al.] // A Front Genet. – 2024. – V.15. – P. 1297034. DOI: 10.3389/fgene.2024.1297034.
57. Goldoni, I. Comprehensive analyses of bone and cartilage transcriptomes evince ion transport, inflammation and cartilage development-related genes involved in chickens' femoral head separation / I. Goldoni, A.M.G. Ibelli, L.T. Fernandes [et al.] // Animals (Basel). – 2022. – V. 12 (6). – P. 788. DOI: 10.3390/ani12060788.
58. Kubota, S. Transcriptome analysis of the uterovaginal junction containing sperm storage tubules in heat-stressed breeder hens / S. Kubota, P. Pasri, S. Okrathok [et al.] // Poult Sci. – 2023. – V. 102 (8). – P. 102797. DOI: 10.1016/j.psj.2023.102797.
59. Walugembe, M. Genetic analyses of tanzanian local chicken ecotypes challenged with newcastle disease virus / M. Walugembe, J.R. Mushi, E.N. Amuzu-Aweh [et al.] // Genes (Basel). – 2019. – V. 10 (7). – P. 546. DOI: 10.3390/genes10070546.
60. Pu, F. Transcriptome analysis of oviduct in laying ducks under different stocking densities / F. Pu, X. Xiong, Y. Li [et al.] // Br. Poult. Sci. – 2022. – V. 63 (3). – P.283–290. DOI: 10.1080/00071668.2021.1983917.
61. Abdelmanova, A.S. Unveiling comparative genomic trajectories of selection and key candidate genes in egg-type russian white and meat-type white cornish chickens / A.S. Abdelmanova, A.V. Dotsev, M.N. Romanov [et al.] // Biology (Basel). – 2021. – V. 10 (9). – P. 876. DOI: 10.3390/biology10090876.
62. Cho, S. Comparison of selection signatures between korean native and commercial chickens using 600K SNP array data / S. Cho, P. Manjula, M. Kim [et al.] // Genes (Basel). – 2021. – V. 12 (6). – P. 824. DOI: 10.3390/genes12060824.
63. Cheng, X. Genome-wide association study exploring the genetic architecture of eggshell speckles in laying hens / X. Cheng, X. Li, M. Yang [et al.] // BMC Genomics. – 2023. – V. 24 (1). – P. 704. DOI: 10.1186/s12864-023-09632-7.
64. Alboali, H. Genome-wide association study for body weight and feed consumption traits in Japanese quail using Bayesian approaches / H. Alboali, M.H. Moradi, A.H. Khaltabadi Farahani, H. Mohammadi // Poult Sci. – 2024. – V. 103 (1). – P. 103208. DOI: 10.1016/j.psj.2023.103208.
65. Fan, S. Genetic architecture and key regulatory genes of fatty acid composition in Gushi chicken breast muscle determined by GWAS and WGCNA / S. Fan, P. Yuan, S. Li [et al.] // BMC Genomics. – 2023. – V. 24 (1). – P. 434. DOI: 10.1186/s12864-023-09503-1.
Review
For citations:
Kostyunina O.V., Romanenkova O.S., Aleynikova O.V. Molecular and genetic mechanisms of egg shell formation. Ernst Journal of Animal Science. 2025;(1):4-15. (In Russ.) https://doi.org/10.25687/3034-493X.2025.2.1.001