Молекулярно-генетические механизмы образования скорлупы у кур
https://doi.org/10.25687/3034-493X.2025.2.1.001
Аннотация
Яйца являются одним из наиболее востребованных источников доступного животного белка. Качество яичной скорлупы представляет особенный биологический интерес и имеет экономическое значение для птицеводства. Огромные потери, вызванные ухудшением качества яичной скорлупы, стали актуальной проблемой при производстве племенного и пищевого яйца. Ухудшение качества яичной скорлупы обуславливает риск заболеваний пищевого происхождения у потребителей. В обзоре представлен анализ литературных данных о молекулярно-генетических механизмах образования яичной скорлупы. Транскриптомный анализ скорлуповой железы у различающихся по возрасту кур-несушек показал дифференциальную экпрессию генов FGF14, COL25A1, GPX8 и GRXCR1. Анализ функциональных аннотаций показал их участие в процессах, связанных с кальцификацией и кутикуляризацией яичной скорлупы. Исследование транскриптома 49-недельных кур, разделенных на группы в зависимости от качества яичной скорлупы, показало, что ген KRT14 являлся одним из генов с наибольшей разницей между группами с прочной и хрупкой яичной скорлупой. После сверхэкспрессии KRT14 в эпителиальных клетках матки экспрессия OC-116, CALB1 и BST1 значительно увеличивается, в то время как экспрессия OC-17 значительно снижается. Сравнение дифференциально экспрессируемых генов в двух независимых исследованиях, выполненных на курах с различными признаками качества скорлупы, показало наличие 16 генов, экспрессия которых носила схожий характер. Идентифицированные гены участвуют в различных биологических процессах и выполняют разнообразные функции. Так, кодируемый геном TTYH3 белок функционирует как кальций(2+)-активируемый хлорид(-) канал большой проводимости. Ген ITPKA регулирует метаболизм инозитолфосфата, являющегося субстратом для циклической АМФ-зависимой протеинкиназы, кальций/кальмодулин-зависимой протеинкиназы II и протеинкиназы C in vitro. ITPKA один из генов, которые связывают с крапинками яичной скорлупы. Таким образом, выполненный анализ литературных данных показал, что молекулярно-генетические механизмы образования яичной скорлупы сложны и до конца не изучены. Проведенные исследования демонстрируют роль дифференциально-экспрессируемых генов в различных процессах, в том числе потенциальное их участие в процессе кальцификации.
Об авторах
О. В. КостюнинаРоссия
Московская обл.
О. С. Романенкова
Россия
Московская обл.
О. В. Алейникова
Россия
Московская обл.
Список литературы
1. Seuss-Baum, I. Nutritional evaluation of egg compounds / I. Seuss-Baum // Bioactive egg compounds / Ed.: R. Huopalahti, R. López-Fandiño, M. Anton, R. Schade. – Verlag Berlin Heidelberg, Springer Publ., 2007. – P.117–144.: – ISBN: 978-3-540-37883-9. – full_text.
2. Mottet, A. Global poultry production: Current state and future outlook and challenges / A. Mottet, G. Tempio // World’s Poult. Sci. J. – 2017. – V. 73. –P. 1–12. DOI:10.1017/s0043933917000071.
3. Schmidt-Nielsen, K. Animal Physiology: adaptation and environment / K. Schmidt-Nielsen // New York: Cambridge University Press. - 1997. - 607 p.
4. Anton, M. Bioactive egg components and their potential uses / M. Anton, F. Nau, Y. Nys // Worlds Poult Sci J. – 2006. – V. 62 (03). – P. 429–438. DOI: 10.1017/S004393390600105X.
5. Rehault, S. Biological activities of the egg / S. Rehault, M. Anton, F. Nau [et al.] // INRA Prod Anim. –2007. – V. 20 (4). – P. 337–347. DOI: 10.20870/productions-animales.2007.20.4.3470
6. Moreau, T. Antimicrobial Proteins and Peptides in Avian Eggshell: Structural Diversity and Potential Roles in Biomineralization / T. Moreau, J. Gautron, M. [et al.] // Front Immunol. 2022. –V. 13. - P.946428. DOI: 10.3389/fimmu.2022.946428.
7. Mine, Y. Egg bioscience and biotechnology / Y. Mine // Hoboken, New Jersey: John Willeys & Sons, Inc. –2008. – 376p.
8. Gautron J. Function of eggshell matrix proteins / J. Gautron, Y. Nys // Bioactive egg compounds / Ed.: R. Huopalahti, R. López-Fandiño, M. Anton, R. Schade. – Germany, Springer-Verlag Publ., 2007. – P. 109–115. – ISBN: 978-3-540-37883-9. – full_text.
9. Gautron, J. Avian eggshell biomineralization: an update on its structure, mineralogy and protein tool kit / J. Gautron, L. Stapane, N. Le Roy [et al.] // BMC Mol Cell Biol. – 2021. – V. 22 (1). – P. 11. DOI: 10.1186/s12860-021-00350-0.
10. Hincke, M.T. The eggshell: structure, composition and mineralization / M.T. Hincke, Y. Nys, J. Gautron [et al.] // Front Biosci. – 2012. – V. 17. – P. 1266–1280. DOI: 10.2741/3985.
11. Nys, Y. Avian eggshell mineralization / Y. Nys, M.T. Hincke, J.L. Arias [et al.] // Poult Avian Biol Rev. – 1999. – V. 10 (3). – P. 143–166.
12. Sauveur, B. Reproduction des volailles et production d'oeufs / B. Sauveur, M. Derevier // Quae edn. Paris: INRA –1988.
13. Solomon, S.E. Egg and egg quality / S.E.Solomon // London, England: Wolfe publishing. – 1991. – 149 p.
14. Ar, A. The avian egg: mass and strength / A. Ar, H. Rahn, V.C. Paganelli // Condor. – 1979. – V.81 (4). – P. 331–337. DOI: 10.2307/1366955.
15. Dennis, J.E. Microstructure of matrix and mineral components of eggshells from white leghorn chickens (Gallus gallus) / J.E. Dennis, S.Q. Xiao, M. Agarwal [et al.] // J Morphol.– 1996. – V.228 (3). – P. 287–306. DOI: 10.1002/(SICI)1097-4687(199606)228:3<287::AID-JMOR2>3.0.CO;2-#.
16. Chen, X. Impact of cuticle quality and eggshell thickness on egg antibacterial efficiency / X. Chen, X. Li,; Y. Guo [et al.] // Poult. Sci. – 2019. – V. 98. – P. 940–948.
17. Li, G. Genome-Wide Analysis of lncRNA and mRNA Expression in the Uterus of Laying Hens during Aging / G. Li, X. Yang, J. Li, B. Zhang // Genes– 2023. – V. 14. – P. 639. DOI.org/10.3390/genes14030639.
18. Travel, A. Effect of hen age, moult, laying environment and egg storage on egg quality / A. Travel, , Y. Nys, M. Bain // Improving the Safety and Quality of Eggs and Egg Products. – 2011. – P. 300–329. DOI:10.1533/9780857093912.3.300
19. Nys, Y. Improving the Safety and Quality of Eggs and Egg Products / Y. Nys, M. Bain, F. van Immerseel // Woodhead Publishing Limited: Cambridge. UK. –2011. –P.300–329.
20. Marie, P. Quantitative proteomics and bioinformatic analysis provide new insight into protein function during avian eggshell biomineralization / P Marie, V. Labas, A. Brionne [et al.] // J. Proteom. –2015. – V. 126. – P. 140–154.
21. Nys, Y. Avian eggshell mineralization: biochemical and functional characterization of matrix proteins / Y. Nys, J. Gautron, J.M. Garcia-Ruiz, M.T. Hincke // C R Palevol. – 2004. – V. 3. – P. 549–562. DOI: 10.1016/j.crpv.2004.08.002.
22. Brionne, A. Hen uterine gene expression profiling during eggshell formation reveals putative proteins involved in the supply of minerals or in the shell mineralization process / A. Brionne, Y. Nys, C. Hennequet-Antier, J. Gautron // BMC Genomics. – 2014. – V. 15. – P. 220. DOI: 10.1186/1471-2164-15-220.
23. Belcher, A.M. Control of crystal phase switching and orientation by soluble mollusc-shell proteins / A.M. Belcher, R.J. Christensen, P.K. Hansma // Nature. –1996. – V. 381(6577). – P. 56–58. DOI:10.1038/381056a0.
24. Dunn, I.C. Polymorphisms in eggshell organic matrix genes are associated with eggshell quality measurements in pedigree Rhode Island Red hens / I.C. Dunn, N.T. Joseph, M. Bain [et al.] // Anim Genet. – 2009. – V. 40 (1). – P. 110–114. DOI: 10.1111/j.1365-2052.2008.01794.x.
25. Dunn, I.C. Genetic variation in eggshell crystal size and orientation is large and these traits are correlated with shell thickness and are associated with eggshell matrix protein markers / I.C. Dunn, A.B. Rodríguez-Navarro, K. Mcdade [et al.] // Animal Genetics. – 2012. – V. 43 (4). – P. 410–418. DOI: 10.1111/j.1365-2052.2011.02280.x.
26. Mann, K. Phosphoproteins of the chicken eggshell calcified layer / K. Mann, J.V. Olsen, B. Macek [et al.] // Proteomics. – 2007. – V. 7 (1). – P. 106–115. DOI: 10.1002/pmic.200600635.
27. Hincke, M.T. Ovalbumin is a component of the chicken eggshell matrix / M.T. Hincke // Connect Tissue Res. – 1995. – V. 31(3). – P. 227–233. DOI: 10.3109/03008209509010814.
28. Hincke, M.T. Identification and localization of lysozyme as a component of the eggshell membranes and shell matrix / M.T. Hincke, J. Gautron, M. Panheleux [et al.] // Matrix Biol. –2000. – V. 19. –P. 443–453. DOI: 10.1016/S0945-053X(00)00095-0.
29. Gautron, J. Ovotransferrin is a matrix protein of the hen eggshell membranes and basal calcified layer / J. Gautron, M.T. Hincke, M. Panhéleux [et al.] // Connect Tissue Res. –2001. – V. 42 (4). – P.255–267. DOI: 10.3109/03008200109016840.
30. Mann, K. Disulfide-linked heterodimeric clusterin is a component of the chicken eggshell matrix and egg white / K. Mann, J. Gautron, Y, Nys [et al.] // Matrix Biol. –2003. – V. 22 (5). – P. 397– 407. DOI: 10.1016/S0945-053X(03)00072-6.
31. Mann, K. The amino acid sequence of ovocleidin 17, a major protein of the avian eggshell calcified layer / K. Mann, F. Siedler // Biochem Mol Biol Int. – 1999. – V. 47 (6) . – P. 997–1007.
32. Hincke, M.T. Molecular cloning and ultrastructural localization of the core protein of an eggshell matrix proteoglycan, ovocleidin-116 / M.T. Hincke, J. Gautron, C.P. Tsang [et al.] // J Biol Chem. – 1999. – V. 274 (46). – P. 32915–32923. DOI: 10.1074/jbc.274.46.32915.
33. Carrino, D.A. Dermatan sulfate proteoglycans from the mineralized matrix of the avian eggshell / D.A. Carrino, J.P. Rodriguez, A.I. Caplan // Connect Tissue Res. – 1997. – V. 36 (3). – P. 175–193. DOI: 10.3109/03008209709160219.
34. Fernandez, M.S. Secretion pattern, ultrastructural localization and function of extracellular matrix molecules involved in eggshell formation / M.S. Fernandez, A. Moya, L. Lopez, J.L. Arias // Matrix Biol. – 2001. – V. 19. – P. 793–803. DOI: 10.1016/S0945-053X(00)00128-1.
35. Gautron, J. Ovocalyxin-32, a novel chicken eggshell matrix protein: Isolation, amino acid sequencing, cloning and immunocytochemical localization / J. Gautron, M..T. Hincke, K. Mann [et al.] // J Biol Chem. – 2001. –V. 276 (42). – P. 39243–39252. DOI: 10.1074/jbc.M104543200.
36. Gautron, J. Cloning of ovocalyxin-36, a novel chicken eggshell protein related to lipopolysaccharide-binding proteins, bactericidal permeability-increasing proteins, and plunc family proteins / J. Gautron, E. Murayama, A.J. Vignal [et al.] // Biol Chem. – 2007. – V. 282 (8). – P. 5273–5286. DOI: 10.1074/jbc.M610294200.
37. Gautron, J. Eggshell matrix proteins / J. Gautron, Y. Nys // Bioactive egg compounds / Ed.: R. Huopalahti, R. López-Fandiño, M. Anton, R. Schade. – Verlag Berlin Heidelberg, Springer Publ., 2007. – P. 103–108. : – ISBN: 978-3-540-37883-9. – full_text.
38. Joyner, C.J. The effect of age on egg production in the domestic hen / C.J. Joyner, M.J. Peddie, T.G. Taylor // Gen. Comp. Endocrinol. – 1987. – V. 65. – P. 331–336.
39. AlBatshan, H.A. Duodenal Calcium Uptake, Femur Ash, and Eggshell Quality Decline with Age and Increase Following Molt / H.A. AlBatshan, S.E. Scheideler, B.L. Black [et al.] // Poult. Sci. – 1994. – V. 73. – P. 1590–1596.
40. Athanasiadou, D. Nanostructure, osteopontin, and mechanical properties of calcitic avian eggshell / D. Athanasiadou, W. Jiang, D. Goldbaum [et al.] // Sci. Adv. –2018. – V.4: eaar3219. DOI: 10.1126/sciadv.aar3219.
41. Roberts, J.R. Effect of production system and flock age on egg quality and total bacterial load in commercial laying hens / J.R. Roberts, K.K. Chousalkar // J. Appl. Poult. Res. – 2014. – V. 23. – P. 59–70.
42. Feng, J. Uterine transcriptome analysis reveals mRNA expression changes associated with the ultrastructure differences of eggshell in young and aged laying hens / J. Feng, H.J. Zhang, S.G. Wu [et al.] // BMC Genom. – 2020. – V. 21. – P. 770. DOI: 10.1186/s12864-020-07177-7.
43. Park, J.A. Histological change of uterus endometrium and expression of the eggshellrelated genes according to hen age / J.A. Park, E.J. Cho, J.Y. Park, S.H. Sohn // Korean J. Poult. Sci. – 2017. – V.44. – P. 19–28.
44. Wistedt, A. Age-related changes in the shell gland and duodenum in relation to shell quality and bone strength in commercial laying hen hybrids / A. Wistedt, Y. Ridderstrale, H. Wall, L. Holm // Acta. Vet. Scand. – 2019. – V. 61. –P. 14. DOI: 10.1186/s13028-019-0449-1.
45. Sun, C.J. Expression analysis for candidate genes associated with eggshell mechanical property / C.J. Sun, Z.Y. Duan, L.J. Qu [et al.] // Journal of Integrative Agriculture. – V. 15 (2) – 2016. – P. 397–402. ISSN 2095-3119. DOI: 10.1016/S2095-3119(14)60969-2.
46. Zhang, Q. Integrating transcriptome and genome re-sequencing data to identify key genes and mutations affecting chicken eggshell qualities / Q. Zhang, F. Zhu, L. Liu, [et al.] // PLoS One. – 2015. – V. 10 (5): e0125890. DOI: 10.1371/journal.pone.0125890.
47. Wu, Y. Multiomic analysis revealed the regulatory role of the KRT14 gene in eggshell quality / Y. Wu, Y. Sun, H. Zhang [et al.] // Front Genet. – 2022. – V.13. – P. 927670. DOI: 10.3389/fgene.2022.927670.
48. Hudson, N.J. Data compression can discriminate broilers by selection line, detect haplotypes, and estimate genetic potential for complex phenotypes / N.J. Hudson, R.J. Hawken, R. Okimoto [et al.] // Poult Sci. – 2017. – V. 96 (9). – P. 3031–3038. DOI: 10.3382/ps/pex151.
49. Claire D’Andre, H. Identification and characterization of genes that control fat deposition in chickens / H. Claire D’Andre, W. Paul, X. Shen [et al.] // J. Anim. Sci. Biotechnol. – 2013. – V.4. – P. 43. DOI.org/10.1186/2049-1891-4-43.
50. Sims, M.A. Cloning and characterisation of ITGAV, the genomic sequence for human cell adhesion protein (vitronectin) receptor alpha subunit, CD51 / M.A. Sims, S.D. Field, M.R. Barnes [et al.] // Cytogenet Cell Genet. – 2000. – V. 89 (3-4). – P. 268–271. DOI: 10.1159/000015631.
51. Chen, B. A Genome-Wide mRNA screen and functional analysis reveal foxo3 as a candidate gene for chicken growth / B. Chen, J. Xu, X. He [et al.] // PLoS One. –2015. – V. 10 (9). – e0137087. DOI: 10.1371/journal.pone.0137087.
52. Sinha, R. LRRTM4: A novel regulator of presynaptic inhibition and ribbon synapse arrangements of retinal bipolar cells / R. Sinha, T.J. Siddiqui, N. Padmanabhan [et al.] // Neuron. – 2020. – V. 105 (6). – P. 1007–1017.e5. DOI: 10.1016/j.neuron.2019.12.028.
53. Parveen, A. Identification and validation of quantitative trait loci for ascites syndrome in broiler chickens using whole genome resequencing / A. Parveen, C.D. Jackson, S. Dey [et al.] // BMC Genet. –2020. – V. 21 (1). – P. 54. DOI: 10.1186/s12863-020-00859-x.
54. Katano-Toki, A. THRAP3 interacts with HELZ2 and plays a novel role in adipocyte differentiation / A. Katano-Toki, T. Satoh, T. Tomaru [et al.] // Mol Endocrinol. – 2013. – V. 27 (5). – P. 769–780. DOI: 10.1210/me.2012-1332.
55. Mastrangelo, S. Genome-wide mapping of signatures of selection using a high-density array identified candidate genes for growth traits and local adaptation in chickens / S. Mastrangelo, S. Ben-Jemaa, F Perini [et al.] // Genet. Sel. Evol. – 2023. – V. 55 (1). – P. 20. DOI: 10.1186/s12711-023-00790-6.
56. Kanlisi, R.A. Genetic architecture of body weight, carcass, and internal organs traits of Ghanaian local chickens / R.A. Kanlisi, Amuzu- E.N. Aweh, A. Naazie [et al.] // A Front Genet. – 2024. – V.15. – P. 1297034. DOI: 10.3389/fgene.2024.1297034.
57. Goldoni, I. Comprehensive analyses of bone and cartilage transcriptomes evince ion transport, inflammation and cartilage development-related genes involved in chickens' femoral head separation / I. Goldoni, A.M.G. Ibelli, L.T. Fernandes [et al.] // Animals (Basel). – 2022. – V. 12 (6). – P. 788. DOI: 10.3390/ani12060788.
58. Kubota, S. Transcriptome analysis of the uterovaginal junction containing sperm storage tubules in heat-stressed breeder hens / S. Kubota, P. Pasri, S. Okrathok [et al.] // Poult Sci. – 2023. – V. 102 (8). – P. 102797. DOI: 10.1016/j.psj.2023.102797.
59. Walugembe, M. Genetic analyses of tanzanian local chicken ecotypes challenged with newcastle disease virus / M. Walugembe, J.R. Mushi, E.N. Amuzu-Aweh [et al.] // Genes (Basel). – 2019. – V. 10 (7). – P. 546. DOI: 10.3390/genes10070546.
60. Pu, F. Transcriptome analysis of oviduct in laying ducks under different stocking densities / F. Pu, X. Xiong, Y. Li [et al.] // Br. Poult. Sci. – 2022. – V. 63 (3). – P.283–290. DOI: 10.1080/00071668.2021.1983917.
61. Abdelmanova, A.S. Unveiling comparative genomic trajectories of selection and key candidate genes in egg-type russian white and meat-type white cornish chickens / A.S. Abdelmanova, A.V. Dotsev, M.N. Romanov [et al.] // Biology (Basel). – 2021. – V. 10 (9). – P. 876. DOI: 10.3390/biology10090876.
62. Cho, S. Comparison of selection signatures between korean native and commercial chickens using 600K SNP array data / S. Cho, P. Manjula, M. Kim [et al.] // Genes (Basel). – 2021. – V. 12 (6). – P. 824. DOI: 10.3390/genes12060824.
63. Cheng, X. Genome-wide association study exploring the genetic architecture of eggshell speckles in laying hens / X. Cheng, X. Li, M. Yang [et al.] // BMC Genomics. – 2023. – V. 24 (1). – P. 704. DOI: 10.1186/s12864-023-09632-7.
64. Alboali, H. Genome-wide association study for body weight and feed consumption traits in Japanese quail using Bayesian approaches / H. Alboali, M.H. Moradi, A.H. Khaltabadi Farahani, H. Mohammadi // Poult Sci. – 2024. – V. 103 (1). – P. 103208. DOI: 10.1016/j.psj.2023.103208.
65. Fan, S. Genetic architecture and key regulatory genes of fatty acid composition in Gushi chicken breast muscle determined by GWAS and WGCNA / S. Fan, P. Yuan, S. Li [et al.] // BMC Genomics. – 2023. – V. 24 (1). – P. 434. DOI: 10.1186/s12864-023-09503-1.
Рецензия
Для цитирования:
Костюнина О.В., Романенкова О.С., Алейникова О.В. Молекулярно-генетические механизмы образования скорлупы у кур. Успехи наук о животных. 2025;(1):4-15. https://doi.org/10.25687/3034-493X.2025.2.1.001
For citation:
Kostyunina O.V., Romanenkova O.S., Aleynikova O.V. Molecular and genetic mechanisms of egg shell formation. Ernst Journal of Animal Science. 2025;(1):4-15. (In Russ.) https://doi.org/10.25687/3034-493X.2025.2.1.001